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On the impulsive motion of a flat plate in a viscous fluid 
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(Received 33 February 1968) 

The unst,eady laminar boundary-layer flow induced by the impulsive motion of 
a semi-infinite flat plate along its length is investigated. It is found that, unlike 
Stewartson's (1951, 1960) conclusion, a power-series solution is possible using 
the ' correctly stretched ' variables in the analysis. The small-time solution, which 
is developed in powers of the time, shows a smooth transition from the initial 
Rayleigh flow to the final Blasius flow without an essential singularity and, 
furthermore, its validity extends to the whole time domain. The series solution 
developed for large times, however, seems divergent and merely asymptotic. No 
evidence is found for the existence of an essential singularity in the solution as 
described by Stewartson. 

1. Introduction 
This paper examines the unsteady laminar boundary-layer flow generated by 

a semi-infinite flat plate which starts t o  move impulsively from rest parallel to 
its length with constant velocity U .  The problem is a basic one in unsteady viscous 
flow theory and also has practical importance in shock-tube applications (Lam 
& Crocco 1958). In spite of the extensive works on the subject in the past, the 
problem still remains intriguing and confusing owing to mathematical difficulties 
in the solution which are not present when the body is bluff. 

Blasius (1908) and Goldstein & Rosenhead (1936), for example, considered 
the impulsive motion of bluff bodies such as cylinders for which the external 
inviscid velocity U outside the boundary layer is not constant. Initially, the 
boundary layer has zero thickness and therefore, at  the beginning of the motion, 
the diffusion is far greater than the convection and the influence of the pressure 
gradient. In  the first approximation, Goldstein & Rosenhead obtain the solution 
to a diffusion equation which results after neglecting the non-linear convection 
and pressure gradient terms in unsteady boundary-layer equations, and then 
iterate to obtain higher approximations. The Goldstein-Rosenhead solution is 
obtained in powers of the time and should be valid for small times extending to a 
nearest singularity in the solution. With only three terms of the expansion known 
so far, the radius of convergence cannot be determined with any certainty. 

A similar approach fails, however, for the present case of a semi-infinite flat 
plate for which the velocity outside the boundary layer is constant. All terms 
other than the first in the infinite series of the Goldstein-Rosenhead solution 
become zero, the first term being the well-known Rayleigh solution for an infinite 
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flat plate. After a long time, however, the flow must, settle down to the steady 
Blasius flow. A question now remains how the initial Rayleigh solution having 
no x-dependence could possibly settle down to the x-dependent but time-inde- 
pendent Blasius solution. Stewartson (1951, 1960) was the first to attempt a 
plausible explanation for it. From the physical requirement, the Rayleigh flow 
must shift to an x-dependent Blasius-type flow in a smooth manner. Stewartson 
argued then that, in the light of no analytical development from Rayleigh- to 
Blasius-type flows, the smooth transition can only be possible through an 
essential singularity. Rather intuitively Stewartson considers7 = 1 as the location 
of this singularity, where 7 = Utlx, x being the distance measured from the 
leading edge and t the time elapsed since the start of the motion. It is argued that, 
for 7 Q 1, since a disturbance at  the leading edge has not arrived yet, the Aow 
remains of Rayleigh type; however, a t  T = 1, the leading-edge effect is felt 
suddenly and the flow starts to have x-dependence by means of an essential 
singularity.? The attempt to construct the mathematical evidence for the 
existence of such a singularity was made by Stewartson for a flat plate and by 
Smith (1967) for a wedge generalizing Stewartson’s analysis. As a first step, 
Stewartson and Smith show that solutions to strongly simplified approximate 
equations of motion, one by Oseen’s approximation method and the other by 
momentum integral method, exhibit the anticipated singular behaviour. How- 
ever, their attempts to construct essential singularities in the solution using 
complete equations of boundary-layer motion fail since some assumptions used 
are still to be justified. Stewartson therefore concludes the existence of singulari- 
ties in this region as tentative only. Despite further investigations by Schuh 
(1953), Cheng (1957) and Cheng & Elliot (1957), no new features were uncovered 
to change Stewartson’s conclusion substantially. Indeed, a uniqueness theorem 
given by Lam & Crocco (1958) for the problem in this region seemed sufficient 
to establish the validity of Stewartson’s solution with the essential singularity 
at 7 = 1-see a recent article by Rott (1964, p. 425), for example. If SO, up to the 
point of singularity 7 = 1, the first-term Rayleigh’s solution is the exact solution 
of the problem. 

One now turns to the flow behaviour when the time elapsed after the start 
of impulsive motion becomes large. At sufficiently large times, the flow settles 
down to a steady flow everywhere or to the Blasius flow for a flat plate. Here 
again, no power-series solution can be found in inverse powers of the time, 
indicating another possible essential singularity (Stewartson 1951). Ironically, 
the similar situation arises even with bluff bodies this time (Kelly 1962; Smith 
1967). The analyses of Stewartson for a flat plate and those of Kelly and Smith 
for bluff bodies at  large times show that the approach to a steady state is ex- 
ponential. This seems to indicate that an analytic power-series solution may not 
exist t o  the problem of impulsive motion regardless of body shapes at  large 
times. Interestingly enough, however, power-series solutions in inverse of the 
time exist a t  large times if the body moves continuously, for example, with 
constant acceleration. Cheng & Elliot (1957) obtained such series solution for a 
fiat plate and Tokuda & Yang (1966) for stagnation flows. Furthermore, the result 

t This argument is questionable. See the dismission in $6.1.  



Impulsive motion of a f lat plate in a viscous fluid 659 

of Toliuda & Yang for stagnation flow with constant acceleration shows that the 
small- and large-time series solutions join smoothly in the intermediate time, 
indicating no occurrence of a singularity in the solution for the whole time do- 
main. For the impulsive motion of a flat plate, the first term of the Blasius solu- 
tion is no longer an exact solution at large times as the Rayleigh solution is at 
small times. Stewartson’s solution tends to the Blasius flow with exponentially 
small terms. Assuming that Stewartson’s conclusion on small- and large-time 
solutions is correct, Lam & Crocco (1958) and Akamatsu & Kamimoto (1966) in- 
vestigated the behaviour of the solution between 7 = 1 and 7 = 00. In  this region, 
then, the solution changes from the initial Rayleigh flow to an x-dependent 
Blasius-type flow by means of an essential singularity a t  7 = 1 and approaches 
the Blasius flow exponentially toward an infinite time. Lam & Crocco transform 
the governing equation into an integral equation and seek the solution as the 
converged limit of the iterants. The iterants seem to converge a t  around the 14th 
iteration but are reported to diverge after the 18th iteration especially near the 
region of singularity 7 = 1. Akamatsu & Ramimoto (1966) employ Meksyn’s 
(1961) method to seek the asymptotic form of the solution. Here again one notices 
an unnecessarily large deviation of the result from the Blasius solution a t  
T = 00 if the condition at the singularity T = 1 is imposed and the modification 
will be discussed further in 56.2. Their solution shows again the exponential 
approach to the Blasius flow. 

As described in detail in the preceding paragraphs, some doubt remains about 
Stewartson’s conclusion on the essential singularity in the solution. Indeed, the 
present analysis shows that the solution has a power-series development for 
both small and large times without encountering an essential singularity if one 
chooses the ‘appropriately stretched ’ co-ordinate system. This co-ordinate 
system will be deduced from physical arguments after examining the vorticity 
transport mechanism within the fluid. 

2. Physical background of unsteady viscous flows 
In  this section the general nature of unsteady viscous flow induced by the 

impulsive motion of a flat plate will be examined by simple physical reasoning. 
Vorticity considerations developed here are seen not only to illuminate the de- 
tailed development of the boundary layer but also to provide the basis for de- 
ducing the appropriate form of stretched variables to  use in the analysis. The 
role of vorticity transfer is essential in the development of boundary-layer theory. 
Indeed, Lighthill (1963) shows convincingly that, to  determine the whole viscous 
flow field completely, it is sufficient to study the development of the vorticity 
field. It is then anticipated that the nature of viscous flow solution strongly de- 
pends on the dominating mode of vorticity propagation away from its source (i.e. 
solid boundaries) through the otherwise undisturbedfluid. It is demonstrated that 
the qualitative nature of a flow can be established first by identifying, and then 
by examining the magnitude of, dimensionless parameters relevant to vorticity 
transfer in the problem. This approach was demonstrated systematically first 
by Stuart (1963) in the investigation of unsteady boundary layers. 

4‘7-2 
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Let a semi-infinite flat plate be immersed in a quiescent, incompressible fluid 
of vanishingly smalI viscosity and let its leading edge be the origin of a rectangular 
co-ordinate system (x, y) with the plate occupying the positive x-axis (see figure 1). 
At the instant t = 0, the plate moves impulsively from rest with uniform velocity 
U in the negative x-direction through otherwise undisturbed fluid. The plate wall 
then becomes a source of vorticity due to the no-slip condition. At t = 0, the 
vorticity generated along the plate wall is concentrated in the form of a vortex 
sheet which will be diffused out from the wall by viscous diffusion and convected 

u 
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boundary-layer region: Re'-' 1 A 
Stokes region 
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FIGURE 1. R,egion of unsteady 1amina.r boundary layer past a flat plate. 

simultaneously by associated flows through the fluid after a short time, forming 
a vorticity layer. Let 6 be the thickness of the vorticity layer formed over the 
plate, which generally depends on both x and t and 11, the kinematic viscosity of 
the fluid. Then the rate with which the bulk properties of the fluid such as vorticity 
or momentum diffuse away from the wall in the transverse direction is of the order 
of v/P. This may be conveniently called the 'transverse diffusion rate ' in analogy 
with the diffusion time, S 2 / v ,  of Stuart (1963, p. 349). In the present problem, 
there exist three characteristic rate scales, namely 1/t, v/x2 and U/x, which are 
associated with vorticity transfer through the viscous fluid and the most domi- 
nant of which is required to be of the same order of the transverse diffusion 
rate. This requirement is familiar in Prandtl's boundary-layer theory if the no- 
slip condition is to be satisfied on the wall. Indeed, depending on which one of 
the t,hree dominates the others and balances the transverse diffusion rate, the 
familiar Rayleigh, Stokes and Blasius flows are obtained as follows: 

(2.1) 

Rayleigh flow: Re/r 9 1, T < 1 and S = O([vt]*),  

Stokes flow: Re/r 4 1, Re cg 1 and 6 = O(x) ,  

Blasius flow: r 9 1, Re 9 1 and S = O ( [ U / v x ] * ) ,  
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where Re = Uxlv  and T = Utlx.  Equation (2.1) shows how the nature of flow 
changes according to the magnitude of Re and T. For example, for a small R e  
fixed, the flow changes from Rayleigh- to Stokes-type flow according as 7 < 1 or 
r 9 1. In a similar manner for a large Re fixed, which is the subject of this paper, 
the change is from Rayleigh to Blasius flows. See the schematic diagram in 
figure 1 for details. This argument can be made more rigorous if we write 

vlS2 = l / t  + 11/x2+ u / x .  ( 2 . 2 )  

Physically (2.2) can be interpreted as expressing the conservation equation of 
vorticity in a qualitative manner. v / P  represents the order of rate of vorticity 
generation at  the wall, while l / t  and v/x2 represent the rate of vorticity diffusion, 
the former according to a Gaussian distribution (Lighthill 1963, p. 56) and the 
latter in the longitudinal direction, and U l x  represents the rate of vorticity 
trmsport by convection. Equation (2.2) may be rewritten in the following forms 
according to the magnitude of Re as 

( 2 . 3 ~ )  

1 

(1 + Re17 + Re): 
- - ___ - for Re < 1. (2.3b) 

In  the present paper, consideration will be given only to the case Re + 00 or the 
boundary-layer region proper. Therefore, one may be justified in neglecting the 
1/Re term in comparison with others of ( 2 . 3 ~ ) .  Now,depending on the magnitude 
of r ,  S may be rearranged from ( 2 . 3 ~ )  as 

( 2 . 4 ~ )  

(2.4b) 

The form of 6 in (2.4) suggests that the original Rayleigh and Blasius boundary- 
layer thickness is only the first term of the asymptotic expansion as T +- 0 and 
T --f co respectively with R e  -+ 00. 

In singular perturbation problems such as the boundary-layer flows, the thin 
singular region must be accordingly stretched. The choice of stretching is often 
critical for the solution. It is most plausible then to use S in (2.4) in forming the 
stretched variables. The stretched variable Y = y/6 to use in the later analysis 
may most conveniently be given as 

Y Y = ( 1 + T)& for Rayleigh-type flow as T --f 0 ,  
(Vt)B 

(2.5a) 

Y = y - (1 + l/r)* for Blasius-type flow as ~-+co. ( 2 . 5 b )  

All the previous analyses, including those of Stewartson (1951) and Lam & 

and (:I* 
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Crocco (1958), among others, employ the original Rayleigh and Blasius stretched 
variables, y/( vt)$ and y( U/vx)g, respectively, and attempt to expand the solution 
in powers of r or 1/r. Writing q = y/(vt)&, the present variable Y is given as 
q(1 + r)& for small r. This shows that a perturbation of the separable type in 
Stewartson's analysis becomes invalid as 7 -+ 00 even for 7 + 0. r included in the 
stretched variable Y becomes a forcing function for bringing x- or t-dependence 
into the Rayleigh or Blasius flow respectively and an analytic solution changing 
smoothly from the Rayleigh to Blasius flow becomes possible. 

3. Governing equations and boundary conditions 

governing equations are those of Prandtl's boundary-layer flows, 
This paper is concerned with the flow where Re S 1. Therefore, the appropriate 

(3.1) 

(5 .2)  

The rectangular co-ordinates (x, y) are those introduced in $ 2  and (u, v) represent 
the velocity components in these directions. 

The boundary conditions to be used with these equations are 

u = v = O  for x > O , t  y = O ,  t > 0 ,  (3.3) 

u+ U exponentially for x > 0, y > 0 ,  t + O ,  (3.4) 

u+ U exponentially for x > 0, y --f CO, t > 0. (3.5) 

The exponential approach in (3.4) and (3.5) is exhibited in the Oseen-type 
solutions of Stewartson (1951) and Smith (1967) and must be imposed as an 
additional condition for flows past bodies with a sharp leading edge (see Van 
Dyke 1964a, p. 139; 19646). 

To solve equations (3.1) to (3.5), we introduce the stream function $ and 
stretched variable Y and 7, 

(3.7) 

r = Clt/x. (3.8) 

t The analysis here is valid for R e  5 1. Therefore, boundary conditions on x are to be 
imposed only for x 9 v / U .  The flow becomes singular as z --f 0 so that Re = 0(1) where 
Stokes flow analysis must be employed (see Tokuda 1968). Within the framework of 
boundary-layer approximations, the boundary condition on x = 0 can certainly not be 
enforceable (cf. Stemartson 1960). 
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In terms of new variables, (3.1) and (3.2) now become 

663 

where 

The boundary conditions for (3.9) are from (3.3) to (3.5): 

f =f,- = 0, Y = 0, 7 > 0, (3.10) 

fI7+1+exp as I'+oo, 7 > 0 .  (3.11) 

Here ' exp ' stands for terms that are exponentially small for large Y. Solutions for 
(3.9) satisfying boundary conditions (3.10) and (3.1 1) will be sought for small and 
large values of 7. 

4. Solution for small 7 

The flow approximates to the Rayleigh flow in the limit 7 + 0. An asymptotic 
solution for small 7 to the full boundary-layer equations (3.9) subject to (3.10) 
and (3.11) will be developed by a series expansion method. 

An examination of (3.9) indicates, however, that, if the solution is developed 
in powers of 7, a singularity arises at  7 = - 1, which inevitably restricts the 
convergence radius to 7 = 1.  However, this singularity can be eliminated. In  the 
present problem, physical significance is attached only to the domain of positive 
real values of 7 and no apparent physical reason can be given for the singularity 
at  7 = - 1. Bellman (1955) and Van Dyke ( 1 9 6 4 ~ )  b )  showed that such an arti- 
ficial singularity might be caused by an inappropriate choice of a co-ordinate 
system and could be eliminated by a simple transformation such as Euler's 
using the principle of analytic continuation. Therefore 7 is now recast into 6, 
using the Euler transformation, as 

In terms of Y and 6 ,  (3.9) now reduces to 

-(1 -5)2yf,,~++5(1-5)2f,5-+62(1 - 5 ) ( f ~ - f I - r - f u l - f 5 ) - f 2 f f ~ ~ , E -  = f E ' Y Y .  

(4.2) 

Equation (1.2) clearly shows that the artificial singularity is eliminated. Appro- 
priate boundary conditions are 

f=fl- = 0, IT= 0, 0 < f < 1.  (4.3) 

f ,-+I+exp, as Y + a .  0 < 5 < 1. (4.4) 
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One now assumes that the function f (  Y ,  5) may be expanded into a power series 

of 5 as m 

f (  y ,  5) = f o (  Y )  + 5 f A  Y )  + Y )  + c W,( Y ) .  (4.5) 
n-3 

Substituting (4.5) into (4.2)) (4.3) and (4.4) and collecting the like powers of <, 
one obtains the following: 

Yji+f;;’ = 0, 

Y f ;  - 2f; +f? = 2 Yf;;, 

Y f ;  - 4f; +ft = Y(2f’; -f;) - 4f; - 2( f ’ f ’  0 1  -f”f 0 1  ) -f o n .  f ”  

t1 3 

I c2 
b ?  

Generally 

s’”, 

where 
U f n )  = g n ,  

d2 d a 3  

d Y 2  dY dY3) 
1, = Y--Zn-+- 

r=O 

r=O r=O 

Boundary conditions are 

fo(0)  = f h ( O )  = 0, fh(co) = l+exp  } (4.7) 
and f,(O) = f A ( O )  = 0, f A ( 0 0 )  = O+exp for n = 1, 2 ,  3, .... 

f o  can be readily integrated to give f h = erf ( Y /  4 2 ) .  Hence f N 1 + exp as Y -too. 
f, functions in (4.6)) satisfying Z,(f,) = g,, are known as parabolic cylindrical 
functions. For ”IZ. = 1, g, --f 0 + exp as Y + 00. The asymptotic solution of f, as 
Y +co is well known and can be given as (see Jones & Watson 1963, p. 247) 
f ;  N A exp ( - Y2/2) Y-3 + B Y2 as Y -+ co, where A and B are arbitrary constants. 
We must choose B = 0. Hence f ;  N O+exp as Y-too. It is easy to show, by 
mathematical induction, that f A+ 0 + exp for any n = 1, 3,  3, . . . . Therefore, the 
exponential approach for f, functions is assured. Differential equations for f, are 
all linear and may in principle be obtained as combinations of the error function 
and its integrals. In  the present paper, however, because of tediousness in cal- 
culations for higher orders, the f, functions are integrated numerically by the 
Runge-Kutta method on the Univac 1108 computer to n = 8. Double precision 
is employed throughout the calculation. Step size of integration is 0.01 and the 
integration was carried out up to Y = 7.0. The result of the calculation will be 
discussed, together with the large-time solution, in $6 .  One now turns to the 
solution for large T .  
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5. Solution for large T 

For T % 1,  the flow should settle down to the Blasius flow everywhere. For this 
time domain, it is most appropriate to apply the Euler transformation in terms of 
1/r as 

(5 .1)  

Hence, as ~ + m ,  Lj-. 1 and E +  0. An asymptotic solution will therefore be sought 
in the limit as E - .  0. 

In  terms of Y and [, (3.9) now reduces to 

- 5 2  YfI’EI - @?( 1 - E )  f F S  + 2E( 1 - E ) Z (  f y  f1-E - f y&)  - ( 1  - E)yfyIr = fI.I.).. 

( 5 . 2 )  

( 5 . 3 )  

f I -+l+exp,  as Y+m, 0 < < 1. (5.4) 

Boundary conditions are 

f = f u  = 0, Y = 0 , 0  < g < 1, 

Since Y does not change whether T < 1 or r 1, (5.2) is deduced from (4.2) by 
substituting 5 = 1 - %. One again assumes that the function f (  Y ,  E )  may be ex- 
panded into a power series of 5 as 

m 

n = 3  

F,, functions must obey the following equations : 

E O ,  

5’ > 

t2 3 

FnF6+ F{ = 0, 
- 

F’F,” + FOP; + Ff - 2(FAF; - FiF,) = 2F0Fb, 
- 

F o F ~ + F 2 F ~ + F ~ - 4 ( F A F ~ - F r ’ g F 2 )  = - YFr’g-ZF; 
- ~ ( F ~ F ~ - F ~ F l ) + 2 ( F ~ P ~ - F ~ F l ) + 2 ( F o i b ~ + F l F , ” )  

-FOP; - Fl F;. 
Generally 

F, 
Lrl(Fn) = G,, 

where 

r=O 

n - 1  n - 2  
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Boundary conditions are 

F,(O) = Fh(0) = 0, FA(co) = l+exp, 

and F,(O) = FA(O) = 0, FA(c0) = O+exp, for n = 1, 2 ,  3, .... (5.7) 

Fo is the well-known Blasius function as expected. For large values of Y, 

FA N 1+exp and F, N Y-p+exp, 

where p = 1.21678. Therefore, for large Y, F, functions in (5.6) behave like para- 
bolic cylindrical functions and their exponential approach as Y +co is assured 
as for f, functions. The F, functions are integrated numerically using the identical 
step size and integration domain as in f, functions. 

6. Results and discussion 
Complete numerical results obtained using double-precision calculation for f, 

and F, functions (n = 0, 1, . . . ,8) will not be given in this paper in the interests of 
brevity. They may be obtained from the author upon request. Table 1 summarizes 
some important results. 

n f 3 0 )  fn( w ) t  
0 0.797885 6.102115 
1 -0.400640 - 0.401719 
2 - 0.622220 x lo-' - 0.242945 
3 0401778 x lo-' -0.111324 
4 0.422265 x lo-' 0.898340 x 
5 0.623748 x 10-1 0.1 17461 
6 0.742694 x 10-1 0.211513 
7 0.802521 x 10-1 0.289651 
8 0.817048 x 10-1 0.352695 

E';(O) 

0.469600 
- 0'234806 
- 0.573581 x 10-l 
- 0.294199 x lo-' 

lo-' - 0.209109 x lo-' 
- 0.245675 x 10-l 
- 0.573250 x lo-' 
-0'202173 
- 0.825587 

t Y = 6.9 is taken as a point at. co 

TABLE 1. Summary for f, and P ,  fiinetions 

Fn( w ) t  
5.683219 

- 0.610899 
- 0.460303 
- 0.388054 
- 0.349769 
- 0.342269 
- 0.399750 
- 0.675072 
- 1.808625 

The skin friction coefficient may be found then as 

S = Cf(Re/2)3 N - [0.797886 - 0.400640[ - 0.062222[2 + 0.008018[3 + 0-0m26<4 

(6.1) 

1 

56 

+ 0.062375[5 + 0.074269[6 + 0.080252[7 + 0*081705<8 + O(<Q)] 

for a Rayleigh-t-ype flow in which is small and 

1 
S = [0*469600 - 0~234806E- 0.057358E2 - 0*029420E3 - 0*020911g4 

- 0.024568E5 - 0*05732@- 0.202173p- 0*835587v8 + O(E9)] 
(1 - 8 4  

(6 .2)  

for a Blasius-type flow in which E is now small. Here C, = 3r , /pU2 ,  Re = 7Jx/v ,  
6 = r / (  1 + T )  and E = 1 - <. 
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The series solutions of (6.1) and (6.2) are examined carefully in the follow- 
ing. Contrary to Stewartson's conclusion, an analytic solution with smooth 
transition from Rayleigh to Rlasius flow is obtained. 

6.1. Rayleigh-type solution near 5 < 1 

Using the expansion (1 - E)-* = 1 + 9fI + it2 + +&3 + . . . , it is convenient to 
rewrite (6.1) as 

+0.177029f;5+0*22795266+ 0-266916f;7+0*287808f;8+ 0(t9)]. (6.3) 

Note here that (2/n)* = 0.797885 and the first term of (6.3), ([2/n] [t/(1-<}])4, 
corresponds to the exact Rayleigh solution, which, according to Stewartson 
(1951) and others, must be the exact solution for 0 < [ < 8. It is significant to 
note, however, that  the series (6.3) has anon-trivial analytical expansion at f; = 0 
from the Rayleigh solution and furthermore the convergence of the series seems 
to extend to f; = 1 or the whole time domain of interest. The series does converge 
rather slowly with nine terms available beyond 6 = 0.6. To obtain reliable 
values, a method for improving the series will be applied here. Shanks (1955) sets 
forth a remarkable scheme of non-linear transformation to accelerate the con- 
vergence of some slowly convergent or even divergent series. The transformation 
is given as 

and P,(Sn) = (6.4) 

where Sn is the sum of the first .n terms of the series and k is the number of itera- 
tions for which the Shanks transformation is applied. Shanks's method has been 
applied by the author quite successfully in other contexts and will be dis- 
cussed in detail elsewhere. In table 3 the variation of skin friction from the 

E 
0 

0.1 
0.2 
0.3 
0 .4  
0.5 
0.6 
0.7 
0.8 
0.9 

S9 

0.797885 
0.798171 
0.799870 
0.804245 
0.813837 
0.833971 
0.876330 
0.968331 
1.183770 
1.803497 

PI(S9) 
0.797885 
0.798171 
0.799870 
0.804248 
0.813884 
0.843439 
0.879735 
0.989661 
1.318334 
3.0 2 0 9 4 

PAS9) 
0-797885 
0.798171 
0.799870 
0.804248 
0.813880 
0.834397 
0.879376 
0.987168 
1.307624 
3.97099 

Pa(S9) 
0.797885 
0.798171 
0.799870 
0.804248 
0.813880 
0.834390 
0.879318 
0.987524 
1.393594 
3-2047 14 

Stewartson's 
(1951) analysis 

0.797885 
0.797885 
0.797885 
0.797885 
0.797885 
0.797885 

TABLE 2. Skin friction, AS[+/( 1 - [)j, from Rayleigh series of (6.3) 
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Rayleigh value, fit;/( 1 - [);, is given for several values of f: using all 9 terms of 
(6.3) along with the improved values by Shanks's transformation. Converged 
values are obtained up to f: = 0.7. However, beyond f: = 0.8, even with the 
Shanks transformation, no reliable values are obtained. A similar scatter is 
observed even for a well-defined convergent series if only finite terms of the 
series are used. We choose the following simple function h(f:) for demonstration, 

WiJ = eXP(t/(t- 1)) (0 6 5 < 1). (6.51 

h([) is analytic everywhere for 0 < f: < 1 and may therefore be represented by 
the following convergent power series : 

(6 .6a)  

= 1 - ~ - 0 * 5 ~ 2 - O * 1 6 6 6 6 7 ~ 3 + 0 * 0 4 1 6 6 7 [ 4 + 0 . 1 5 ~ 5  

+0*209722[6+0*216468~7+0*194969[8+0(~9).  (6 .6b)  

Shanks's transformation is applied to the nine terms of the series of (6.6). The 
result is compared with the exact value of h([) in table 3. Using (6.6b), the con- 

Exact 
8, P l @ Y )  PAS,) P3(SY) 

5 

0.0 1.00 1.0 1.0 1 .0 1.0 

0.894840 0.894840 0.894840 0.894840 0.1 0.894840 
(0.894840) (0.894840) (0.894840) (0.894840) 

0.2 0.778801 0.778800 0.778801 0.778801 0.778801 
(0.778798) (0.778798) (0.778798) (0.778798) 
0.651440 0.651440 0.651440 0.651440 0.3 0.651439 

(0.651415) (0.651419) (0.651419) (0.651419) 
0.51341ti 0.513416 0.513416 0.4 0.3 1 34 1 7 0.513416 

(0.513277) (0.513349) (0.513343) (0.513345) 
0.3 0.367879 0.367882 0.367879 0.367879 0.367879 

(0.367186) (0.367810) (0.367757) (0.367845) 
0.6 0.223130 0.223222 0.223122 0.223131 0.223131 

(0.220175) (0.223994) (0.223756) (0.226633) 
0.7 0.0969720 0.101537 0.0966166 0.0969996 0.0969703 

(0.0867595) (0.105755) (0.105505) (0.343083) 
0.8 c)~018315ci 0.5301587 -0.011640 -0'020137 04182058 

W )  

(1.0) (1.0) (1.0) (1.0 ) 

( -  0-006114) (0.0772436) (0'088424) ( -  0.23O1184) 
0.9 0.000 123410 54.9010 - 16.17656 0.512823 -0.01734 

(-0.011885) (0.341625) (0.629603) ( - 0'404993) 

Values without parentheses are calculated from ( 6 . 6 ~ ~ )  and with parentheses from (6 .6b) .  

TABLE 3. h([ )  = e-t'(l-t) from power series of ( 6 . 6 ~ ~ )  and (6.6b) 

vergence deteriorates beyond t = 0-7 as indicated by divergent values of higher 
Shankci's transformation. Curiously enough, the Shanks method is extremely 
effective in extracting accurate values from the series of ( 6 . 6 ~ ~ )  despite the fact 
that  the originalseries (6.6n)is more divergent than(6.6b),for example, at  [= 0.8. 
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It is now concluded, then, that the skin friction in table 2 is accurate at least to 
( = 0.7. No evidence therefore exists for the essential singularity a t  5 = or 
7 =  1.  

This analytical transition is physically more plausible in view of the dominant 
diffusion mechanism involved in the problem. At the start of the motion, a 
vortex sheet of constant strength will be created along the wall of the plate. 
For an infinite flat plate, this vortex sheet extends to infinity, with the diffusion 
of vorticity taking place only in the transverse direction. On the other hand, for 
a semi-infinite plate the vortex sheet terminates a t  the leading edge. The uni- 
formity of vorticity distribution in the x-direction is now lost near the leading 
edge and the diffusion of vorticity will become x-dependent. A disturbance at 
the leading edge is induced essentially by this diffusion and therefore is considered 
t o  extend beyond the leading edge including the downstream region with smooth 
decay of its strength. This disturbance will perhaps be transported simul- 
taneously by convection in the manner described by Stewartson (1960). From 
these considerations, Stewartson’s explanation for a sudden transition of the 
flow type cited in $ 1  is physically questionable. A similar argument has been 
given by Riley (1963) for unsteady heat transfer over a flat plate. Stewartson’s 
analysis predicts a 4.5 yo lower skin friction value at  [ = 4, compared with the 
present result. 

6.2. Blusius-type solution neur E( = 1 - () < 1 

Equation (6.3) may be rewritten, using the (1 - E)-i expansion, as 

8 - 0*469600[1- 0*000013E+ 0*0038512E2 + 0*00122753- 0*005723E4 

- 0*026871E5- 0.115362p- 0*475604~7-2~000963~8+0(~g) ] .  (6.7) 

The first term of (6.7), 0.469600, corresponds to the exact Blasius value. Again it 
is seen that the skin friction series (6.7) has a power-series expansion in around 
the Blasius solution. However, the series now seems divergent and merely 
asymptotic. Therefore, the large-time series should only be used for E <  1. In 
table 4, the variation of skin friction for E = 0*1,0*2 and 0.3 is given. For 5 = 0.1 
and 0.2, a point has not been reached yet beyond which the error starts to increase. 

r1 

0 
1 
2 
3 
4 
5 
0 

8 

r 

2 = 0.0 

0.469600 
0.469600 
0.469600 
0.469600 
0.469600 
0.469600 
0.469600 
0.4 6 9 6 0 0 
0.469600 

2 = 0.1 

0.495000 
0.470251 
0.469616 
0.469613 
0.469613 
0.469613 
0.469613 
0.469613 
0.469613 

2 = 0.2 

0.525029 
0.472526 
0.469959 
0.469696 
0.469659 
0.469650 
0.469645 
0.469643 
0.469641 

TABLE 4. Skin friction, is‘, from Blasius series of (6.7) 

5 = 0.3 

0.561280 
0.477085 
0.470915 
0,469965 
0.469763 
0.469692 
0.469642 
0.469589 
0.469524 
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For E = 0.3, one must stop at n = 6 since the error neglected in the series starts 
to increase beyond it. 

The analysis of Akamatsu & Kamimoto (1966)’ using Meksyn’s (1961) asymp- 
totic approach, is of interest. The essence of Meksyn’s method is to expand the 
stream function for small Y and to determine the variable coefficients using the 
asymptotic method of steepest descent. It is most appropriate to impose the 
inner boundary conditions if known rather than the outer free-stream condition 
as Y --f co where the expansion loses its validity. Accordingly, specifying the 
boundary conditions that X takes on the Blasius value ( =  0.4696) at 5 = 0 
and the present Rayleigh-series vaIue ( = 0.8344) together with the continuous 
derivative at  5 = i, the first-order solution of Akamatsu & Kamimoto (1966) for 
skin friction may be modified as 

j0*65(2E- - . ... l)]]-$ 

t 1.656 - 0.587 exp ~ (6.8) 

The result is given in figure 2 and good agreement with the present result is noted. 
On the other hand, Lam & Crocco’s (1958) result based on Stewartson’s analysis 
shows a 7-8 yo deviation from the present result at  .$ = 0.6. The divergence of 
the iterants experienced by Lam & Crocco may be eliminated if the present small- 
time solution is used instead. 

I I I I I I I I I I 1 %  
0 0 1  0 2  0 3  0 4  0 5  0 6  0.7 0 8  0 9  1.0 

tu/x 
(tUlx) + 1 .  

Dimensionless time 5 = ___ 

FIGURE 2.  Variation of skin friction over a flat plate. -, Rayleigh-series solution (6.1); 
, Rlasius-series solution (6.2); 8 -8, Lam & Crocco (1958); A A ,  modified 

Akamatsu & Kamimoto equation (6.8). 
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7. Conclusions 
The unsteady boundary-layer flow induced by the impulsive motion of a 

semi-infinite flat plate is re-examined. The use of the correctly stretched variable 
Y of (2 .5)  is the most important factor in the present analysis. The power-series 
solution for small [ now becomes possible and the 9 terms of the series calculated 
seem to indicate its convergence in the whole domain of physical significance 
0 6 6 < 1. The appearance of a possible singularity at  [ = 4 is eliminated by 
using a simple Euler transformation. No evidence for the type of an essential 
singularity at  [ = 4 described by Stewartson (1951, 1960) is found. The power- 
series solution for large times or small ( = 1 - &) seems merely asymptotic. The 
result of Akamatsu & Kamimoto (1966), using Meksyn’s method, gives a good 
result if modified by imposing the inner boundary conditions rather than the 
outer condition. The Lam-Crocco result using Stewartson’s solution up to 
[ = t deviates by 7 % from the present solution. 
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